


Quality First Quality

Once again we are proud to present our annual water quality report covering all testing performed between January 1 and December 31, 2010. As in years past, we are committed to delivering the best-quality drinking water possible. To that end, we remain vigilant in meeting the challenges of new regulations, source water protection, water conservation, and community outreach and education while continuing to serve the needs of all of our water users. Thank you for allowing us

to continue providing you and your family with quality drinking water.

We encourage you to share your thoughts with us on the information contained in this report. Should you ever have any questions or concerns, we are always available to assist you.

Where Does My Water Come From?

The City of Cambridge Municipal Utilities Commission customers are fortunate because we enjoy an abundant water supply from nine wells withdrawing from three different aquifers. We have six wells pumping from the Piney Point aquifer, which is approximately 500 feet below the surface; one well in the Magothy aquifer, which is approximately 900 feet below the surface; and two wells withdrawing from the Raritan aquifer, which is approximately 1,400 feet deep. To meet our daily demand, we are currently operating three or four of the wells with the others in reserve. The wells pump water into ground storage tanks located at our four pumping stations. The stations are located on Stone Boundary Road, Nathans Avenue, Glasgow Street, and Brohawn Avenue. Water is pumped from our pumping stations into the distribution system supported by our two elevated storage tanks with a capacity of 1.5 million gallons. We provide our customers with roughly 1.8 million gallons of good, safe drinking water every day.

We are nearing completion of a new well at our Nathan's Avenue pumping complex. The well is 16 inches in diameter, 960 feet deep, and in the Magothy aquifer. This well will increase our capacity and provide for future demands. With total costs of approximately \$320,000, the MUC was able to fund this from our improvement accounts without incurring any debt. The MUC, through efficient management and operation, is proud to say has no outstanding debt. This contributes to being able to keep costs at a minimum in these tough economic times.

Information on the Internet

The U.S. EPA Office of Water (www.epa.gov/watrhome) and the Centers for Disease Control and Prevention (www.cdc.gov) Web sites provide a substantial amount of information on many issues relating to water resources, water conservation, and public health. Also, the Maryland Department of the Environment has a Web site (www.mde.state.md.us/water) that provides complete and current information on water issues in Maryland, including valuable information about our watershed.

What's Your Water Footprint?

You may have some understanding about your carbon footprint, but how much do you know about your water footprint? The water footprint of an individual, community, or business is defined as the total volume of freshwater that is used to produce the goods and services that are consumed by the individual or community or produced by the business. For example, 11 gallons of water are needed to irrigate and wash the fruit in one half-gallon container of orange juice. Thirty-seven gallons of water are used to grow, produce, package, and ship the beans in that morning cup of coffee. Two hundred and sixty-four gallons of water are required to produce one quart of milk, and 4,200 gallons of water are required to produce two pounds of beef.

According to the U.S. EPA, the average American uses about 100 gallons of water daily. In fact, in the developed world, one flush of a toilet uses as much water as the average person in the developing world allocates for an entire day's cooking, washing, cleaning, and drinking. The annual American per capita water footprint is about 8,000 cubic feet; twice the global per capita average. With water use increasing six-fold in the past century, our demands for freshwater are rapidly outstripping what the planet can replenish.

To check out your own water footprint, go to www.h2oconserve.org or visit www.waterfootprint.org to see how the water footprints of other nations compare.

Community Participation

You are invited to participate in our public forum and voice your concerns about your drinking water. We meet the fourth Thursday of each month, beginning at 6:30 p.m., at the City Council Chambers, 305 Gay Street, Cambridge, MD.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Questions?

For more information about this report, or for any questions relating to your drinking water, please call Gary R. Newcomb, Manager, at (410) 228-5440.

New Arsenic Regulation

A rsenic contamination of drinking water sources may result from either natural or human activities. Volcanic activity, erosion of rocks and minerals, and forest fires are natural sources that can release arsenic into the environment. Although about 90 percent of the arsenic used by industry is for wood preservative purposes, it is also used in paints, drugs, dyes, soaps, metals, and semiconductors. Agricultural applications, mining, and smelting also contribute to arsenic releases. Arsenic is usually found in the environment combined with other elements such as oxygen, chlorine, and sulfur (inorganic arsenic); or combined with carbon and hydrogen (organic arsenic). Organic forms are usually less harmful than inorganic forms.

Low levels of arsenic are naturally present in water - about 2 parts arsenic per billion parts of water (ppb). Thus, you normally take in small amounts of arsenic in the water you drink. Some areas of the country have unusually high natural levels of arsenic in rock, which can lead to unusually high levels of arsenic in water.

In January 2001, the U.S. EPA lowered the arsenic Maximum Contaminant Level (MCL) from 50 to 10 ppb in response to new and compelling research linking high arsenic levels in drinking water with certain forms of cancer. All water utilities were required to implement this new MCL in January 2006.

Removing arsenic from drinking water is a costly procedure but well worth the expenditure considering the health benefits. For a more complete discussion visit the U.S. EPA's arsenic Web site at http://water.epa.gov/lawsregs/rulesregs/sdwa/arsenic/index.cfm.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources, such as agriculture, urban stormwater runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban stormwater runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

Water Treatment Process

Due to the high-quality well water utilitized, the treatment process consists of just two steps. First, raw water is drawn from our wells and sent to an aeration tray, which allows for oxidation of the low iron levels that are present in the water. The water then goes to a holding tank. Chlorine is then added for disinfection. (We carefully monitor the amount of chlorine, adding the lowest quantity necessary to protect the safety of your water without compromising taste.) Finally the water is pumped from the pumpage facilities to sanitized water towers and into your home or business. Our certified water production operators monitor samples 365 days a year at different points in the system to ensure the quality of the water.

Source Water Assessment

A Source Water Assessment Plan (SWAP) is now available at our office. This plan is an assessment of the delineated area around our listed sources through which contaminants, if present, could migrate and reach our source water. It also includes an inventory of potential sources of contamination within the delineated area and a determination of the water supply's susceptibility to contamination by the identified potential sources.

According to the Source Water Assessment Plan, our water system had a susceptibility rating of medium. If you would like to review the Source Water Assessment Plan, please feel free to contact our office during regular office hours.

Naturally Occurring Bacteria

The simple fact is, bacteria and other microorganisms inhabit our world. They can be found all around us: in our food; on our skin; in our bodies; and, in the air, soil, and water. Some are harmful to us and some are not. Coliform bacteria are common in the environment and are generally not harmful themselves. The presence of this bacterial form in drinking water is a concern because it indicates that the water may be contaminated with other organisms that can cause disease. Throughout the year, we tested many water samples for coliform bacteria. In that time, none of the samples came back positive for the bacteria. Federal regulations now require that public water that tests positive for coliform bacteria must be further analyzed for fecal coliform bacteria. Fecal coliform are present only in human and animal waste. Because these bacteria can cause illness, it is unacceptable for fecal coliform to be present in water at any concentration. Our tests indicate no fecal coliform is present in our water.

Lead and Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Cambridge Municipal Utilities Commission is responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Why do I get this report each year?

Community water system operators are required by federal law to provide their customers with an annual water quality report. The report helps people make informed choices about the water they drink. It lets people know what contaminants, if any, are in their drinking water and how these contaminants may affect their health. It also gives the system operators a chance to tell customers what it takes to deliver safe drinking water.

Why does my water sometimes look "milky"?

The "milky" look is caused by tiny air bubbles in the water. The water in the pipes coming into your home or business is under pressure, so gasses (the air) are dissolved and trapped in the pressurized water as it flows into your glass. As the air bubbles rise in the glass, they break free at the surface, thus clearing up the water. Although the milky appearance might be disconcerting, the air bubbles won't affect the quality or taste of the water.

How can I keep my pet's water bowl germ free?

Veterinarians generally recommend that water bowls be washed daily with warm, soapy water—normally when you change the water. Scour the corners, nooks, and crannies of the water dish using a small scrub brush. In addition, once a week put water bowls into the dishwasher to sanitize them with hot water. In most situations, disinfectants like bleach are not needed; warm, soapy water is all you need to keep your pet's water clean and safe.

How much water is used during a typical shower?

The Federal Energy Policy Act set a nationwide regulation that limits showerheads to a maximum flow of 2.5 gallons per minute (GPM). Showerheads made before 1980 are rated at 5 GPM. Since the average shower is estimated to last 8.2 minutes, the old showerheads use 41 gallons of water while the newer, low-flow showerheads use only about 21 gallons.

Is it okay to use hot water from the tap for cooking and drinking?

No, always use cold water. Hot water is more likely to contain rust, copper, and lead from household plumbing and water heaters. These substances can dissolve into hot water faster than they do into cold water, especially when the faucet has not been used for an extended period of time.

How many contaminants are regulated in drinking water?

The U.S. EPA regulates over 80 contaminants in drinking water. Some states may choose to regulate additional contaminants or to set stricter standards, but all states must have standards at least as stringent as the U.S. EPA's.

Sampling Results

Sodium (ppm)

2010

130

uring the past year, we have taken hundreds of water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic, or synthetic organic contaminants. The table below shows only those contaminants that were detected in the water. The state requires us to monitor for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

Naturally occurring

REGULATED SUBSTANCES							
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	MCL [MRDL]	MCLG [MRDLG]	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
Haloacetic Acids [HAA] (ppb)	2010	60	NA	2.8	1.3-4.1	No	By-product of drinking water disinfection
TTHMs [Total Trihalomethanes] (ppb)	2010	80	NA	12.1	9.1–16.6	No	By-product of drinking water disinfection
UNREGULATED SUBSTANCES 1 1 Unregulated contaminants are those for which the U.S. EPA has not							
SUBSTANCE YEAR AMOUNT RANGE (UNIT OF MEASURE) SAMPLED DETECTED LOW-HIGH TYPICAL SOURCE					established drinking water standards. The purpose of unregulated contaminant monitoring is to assist the FPA in determining the occurrence		

96-166

re those for which the U.S. EPA has not tandards. The purpose of unregulated contaminant monitoring is to assist the EPA in determining the occurrence of unregulated contaminants in drinking water and whether future regulation is warranted.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant **Level):** The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level **Goal):** The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant **Level):** The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).